On harmonic functions of symmetric Lévy processes
نویسنده
چکیده
We consider some classes of Lévy processes for which the estimate of Krylov and Safonov (as in (Potential Anal. 17 (2002) 375–388)) fails and thus it is not possible to use the standard iteration technique to obtain a-priori Hölder continuity estimates of harmonic functions. Despite the failure of this method, we obtain some a-priori regularity estimates of harmonic functions for these processes. Moreover, we extend results from (Probab. Theory Related Fields 135 (2006) 547–575) and obtain asymptotic behavior of the Green function and the Lévy density for a large class of subordinate Brownian motions, where the Laplace exponent of the corresponding subordinator is a slowly varying function. Résumé. On considère des classes de processus de Lévy pour lesquels les estimations de Krylov et Safonov (comme dans (Potential Anal. 17 (2002) 375–388)) ne sont pas verifiées donc il n’est pas possible d’utiliser la technique standard d’itération pour obtenir a priori des estimations de continuité Hölder pour des fonctions harmoniques. Bien qu’il soit impossible d’appliquer cette méthode, on obtient des estimations a priori de régularité de fonctions harmoniques pour ces processus. De plus, on étend les résultats de (Probab. Theory Related Fields 135 (2006) 547–575) et on obtient les comportements asymptotiques de la fonction de Green et de la densité de Lévy pour une grande classe de mouvements browniens subordonnés, où l’exposant de Laplace du subordinateur correspondant est une fonction à variation lente. MSC: Primary 60J45; 60J75; secondary 60J25
منابع مشابه
Uniform Boundary Harnack Principle for Rotationally Symmetric Lévy processes in General Open Sets
In this paper we prove the uniform boundary Harnack principle in general open sets for harmonic functions with respect to a large class of rotationally symmetric purely discontinuous Lévy processes. AMS 2010 Mathematics Subject Classification: Primary 60J45, Secondary 60J25, 60J50.
متن کاملExcursions away from a regular point for one-dimensional symmetric Lévy processes without Gaussian part
The characteristic measure of excursions away from a regular point is studied for a class of symmetric Lévy processes without Gaussian part. It is proved that the harmonic transform of the killed process enjoys Feller property. The result is applied to prove extremeness of the excursion measure and to prove several sample path behaviors of the excursion and the h-path processes.
متن کاملOn the laws of first hitting times of points for one-dimensional symmetric stable Lévy processes
Several aspects of the laws of first hitting times of points are investigated for one-dimensional symmetric stable Lévy processes. Itô’s excursion theory plays a key role in this study.
متن کاملMinimal Thinness with Respect to Symmetric Lévy Processes
Minimal thinness is a notion that describes the smallness of a set at a boundary point. In this paper, we provide tests for minimal thinness at finite and infinite minimal Martin boundary points for a large class of purely discontinuous symmetric Lévy processes.
متن کاملBoundary behavior of α-harmonic functions on the complement of the sphere and hyperplane
We study α-harmonic functions on the complement of the sphere and on the complement of the hyperplane in Euclidean spaces of dimension bigger than one, for α ∈ (1, 2). We describe the corresponding Hardy spaces and prove the Fatou theorem for α-harmonic functions. We also give explicit formulas for the Martin kernel of the complement of the sphere and for the harmonic measure, Green function an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012